Thioredoxin-interacting protein-activated intracellular potassium deprivation mediates the anti-tumour effect of a novel histone acetylation inhibitor HL23, a fangchinoline derivative, in human hepatocellular carcinoma

硫氧还蛋白相互作用蛋白激活的细胞内钾缺乏介导新型组蛋白乙酰化抑制剂HL23(一种防己诺林衍生物)在人类肝细胞癌中的抗肿瘤作用

阅读:6
作者:Yuanjun Lu, Yazhou Liu, Junjie Lan, Yau-Tuen Chan, Zixin Feng, Lan Huang, Ning Wang, Weidong Pan, Yibin Feng

Conclusion

Our study identified HL23 as a novel HDACi through enhancing acetylation at TXNIP promoter to trigger TXNIP-dependent potassium deprivation and enhance sorafenib efficacy in HCC treatment.

Methods

Both in vitro assays and orthotopic HCC mouse models were used to investigate the effects of HL23 in this study. The inhibitory activity of HL23 on HDACs was evaluated by in silico studies and cellular assays. Chromatin immunoprecipitation (ChIP) was conducted to confirm the regulation of HL23 on acetylation mark at TXNIP promoter. Genome-wide transcriptome analysis together with bioinformatic analysis were conducted to identify the regulatory mechanisms of HL23. The clinical significance of TXNIP and HDACs was evaluated by analysing publicly available database.

Results

HL23 exerted compatible HDACs inhibition potency as Vorinostat (SAHA) while had superior anti-HCC effects than SAHA and sorafenib. Both in vitro and in vivo studies showed HL23 significantly suppressed HCC progression and metastasis. HL23 significantly upregulated TXNIP expression via regulating acetylation mark (H3K9ac) at TXNIP promoter. TXNIP was responsible for anti-HCC activity of HL23 through mediating potassium channel activity. HDAC1 was predicted to be the target of HL23 and HDAC1lowTXNIPhigh could jointly predict promising survival outcome of patients with HCC. Combination treatment with HL23 and sorafenib could significantly enhance sorafenib efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。