Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6

铁和维生素 B6 催化血液中的半胱氨酸非酶促硫化氢生成

阅读:9
作者:Jie Yang, Paul Minkler, David Grove, Rui Wang, Belinda Willard, Raed Dweik, Christopher Hine

Abstract

Hydrogen sulfide (H2S) plays important roles in metabolism and health. Its enzymatic generation from sulfur-containing amino acids (SAAs) is well characterized. However, the existence of non-enzymatic H2S production from SAAs, the chemical mechanism, and its biological implications remain unclear. Here we present non-enzymatic H2S production in vitro and in blood via a reaction specific for the SAA cysteine serving as substrate and requires coordinated catalysis by Vitamin B6, pyridoxal(phosphate), and iron under physiological conditions. An initial cysteine-aldimine is formed by nucleophilic attack of the cysteine amino group to the pyridoxal(phosphate) aldehyde group. Free or heme-bound iron drives the formation of a cysteine-quinonoid, thiol group elimination, and hydrolysis of the desulfurated aldimine back to pyridoxal(phosphate). The reaction ultimately produces pyruvate, NH3, and H2S. This work highlights enzymatic production is inducible and robust in select tissues, whereas iron-catalyzed production contributes underappreciated basal H2S systemically with pathophysiological implications in hemolytic, iron overload, and hemorrhagic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。