miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation

miR-99 家族 MicroRNA 抑制前列腺特异性抗原的表达和前列腺癌细胞增殖

阅读:7
作者:Dandan Sun, Yong Sun Lee, Ankit Malhotra, Hak Kyun Kim, Mirela Matecic, Clive Evans, Roderick V Jensen, Christopher A Moskaluk, Anindya Dutta

Abstract

MicroRNAs (miRNA) have been globally profiled in cancers but there tends to be poor agreement between studies including in the same cancers. In addition, few putative miRNA targets have been validated. To overcome the lack of reproducibility, we profiled miRNAs by next generation sequencing and locked nucleic acid miRNA microarrays and verified concordant changes by quantitative RT-PCR. Notably, miR-125b and the miR-99 family members miR-99a, -99b, and -100 were downregulated in all assays in advanced prostate cancer cell lines relative to the parental cell lines from which they were derived. All four miRNAs were also downregulated in human prostate tumor tissue compared with normal prostate. Transfection of miR-99a, -99b, or -100 inhibited the growth of prostate cancer cells and decreased the expression of prostate-specific antigen (PSA), suggesting potential roles as tumor suppressors in this setting. To identify targets of these miRNAs, we combined computational prediction of potential targets with experimental validation by microarray and polyribosomal loading analysis. Three direct targets of the miR-99 family that were validated in this manner were the chromatin-remodeling factors SMARCA5 and SMARCD1 and the growth regulatory kinase mTOR. We determined that PSA is posttranscriptionally regulated by the miR-99 family members, at least partially, by repression of SMARCA5. Together, our findings suggest key functions and targets of miR-99 family members in prostate cancer suppression and prognosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。