Decreased cholesterol uptake and increased liver x receptor-mediated cholesterol efflux pathways during prostaglandin F2 alpha-induced and spontaneous luteolysis in sheep

在绵羊中,前列腺素 F2 α 诱导和自发性黄体溶解过程中,胆固醇吸收减少,肝脏 x 受体介导的胆固醇流出途径增加

阅读:5
作者:Nickie L Seto, Randy L Bogan

Abstract

In nonprimate species, it has been well established that prostaglandin F2 alpha (PGF2alpha) initiates luteolysis. Changes in intracellular cholesterol concentrations caused by modulation of cholesterol uptake and efflux may mediate PGF2alpha-induced luteolysis. These changes in cholesterol efflux and uptake are controlled, in part, by the liver x receptors (LXR) alpha (NR1H3) and beta (NR1H2), nuclear receptors that increase expression of genes necessary for cholesterol efflux or limiting cholesterol uptake. Therefore, we hypothesized that PGF2alpha reduces expression of cholesterol uptake and increases expression of cholesterol efflux genes, mediated in part by enhanced LXR activity. To test this hypothesis, an induced luteolysis model was used whereby ewes were treated during their midluteal phase with saline or PGF2alpha and corpora lutea (CL) collected 12, 24, or 48 h later for determination of mRNA and protein concentrations by quantitative real-time PCR and Western blot analysis, respectively. As a complementary approach, CL undergoing spontaneous luteolysis were compared to midluteal phase CL. The lipoprotein receptors responsible for cholesterol uptake were significantly decreased in both luteolysis models. Expression of the LXR target gene ATP binding cassette subfamily A1 (ABCA1), an important mediator of cholesterol efflux, was significantly increased in both experimental models. Chromatin immunoprecipitation confirmed that PGF2alpha treatment resulted in enhanced NR1H3 and NR1H2 binding to the ABCA1 promoter. Qualitative changes in lipid droplet distribution were also observed following PGF2alpha treatment. These data support the hypothesis that reduced cholesterol uptake and increased efflux mediate luteolysis in sheep, which is partially controlled by PGF2alpha stimulation of LXR activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。