NAPE-PLD regulates specific baseline affective behaviors but is dispensable for inflammatory hyperalgesia

NAPE-PLD 调节特定的基线情感行为,但对于炎症痛觉过敏则无能为力

阅读:4
作者:Irene Chen, Laura B Murdaugh, Cristina Miliano, Yuyang Dong, Ann M Gregus, Matthew W Buczynski

Abstract

N-acyl-ethanolamine (NAEs) serve as key endogenous lipid mediators as revealed by manipulation of fatty acid amide hydrolase (FAAH), the primary enzyme responsible for metabolizing NAEs. Preclinical studies focused on FAAH or NAE receptors indicate an important role for NAE signaling in nociception and affective behaviors. However, there is limited information on the role of NAE biosynthesis in these same behavioral paradigms. Biosynthesis of NAEs has been attributed largely to the enzyme N-acylphosphatidylethanolamine Phospholipase D (NAPE-PLD), one of three pathways capable of producing these bioactive lipids in the brain. In this report, we demonstrate that Nape-pld knockout (KO) mice displayed reduced sucrose preference and consumption, but other baseline anxiety-like or depression-like behaviors were unaltered. Additionally, we observed sex-dependent responses in thermal nociception and other baseline measures in wildtype (WT) mice that were absent in Nape-pld KO mice. In the Complete Freund's Adjuvant (CFA) model of inflammatory arthritis, WT mice exhibited sex-dependent changes in paw edema that were lost in Nape-pld KO mice. However, there was no effect of Nape-pld deletion on arthritic pain-like behaviors (grip force deficit and tactile allodynia) in either sex, indicating that while NAPE-PLD may alter local inflammation, it does not contribute to pain-like behaviors associated with inflammatory arthritis. Collectively, these findings indicate that chronic and systemic NAPE-PLD inactivation will likely be well-tolerated, warranting further pharmacological evaluation of this target in other disease indications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。