A Localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection

局部表面等离子体共振 (LSPR) 传感器集成自动微流体系统,用于多重炎症生物标志物检测

阅读:6
作者:Jhih-Siang Chen, Pin-Fan Chen, Hana Tzu-Han Lin, Nien-Tsu Huang

Abstract

Inflammation is a complex biological response of the human body to external or internal stimuli, such as invading pathogens, defective cells, or irritating substances. One important indicator of inflammatory conditions or the progress of various diseases, such as cancer, cardiovascular diseases, neurological diseases, connective tissue diseases, sepsis, or Alzheimer's disease, is the concentration level of inflammatory biomarkers, including immunoglobulins, cytokines, and C-reactive protein (CRP). Since inflammatory biomarkers are highly correlated with each other, it is important to measure them simultaneously. To enable continuous and dynamic inflammatory biomarker detection, we utilized localized surface plasmon resonance (LSPR) to perform label-free molecule sensing. Since the LSPR sensing mechanism requires only a small sensing area with simplified optical setup, it can be easily integrated with a microfluidic device. To simplify reagent operation complexity, we developed an automated microfluidic control system to control reagent guiding and switching in the immunoassay with less manual processes and potential operation errors. Our results successfully demonstrated multiplex IgG, TNF-α, and CRP measurement with only 60 μL assay volume and 3.5 h assay time. In each test, 20 sensing spot measurements under four different reagent conditions can be performed. Overall, we envision that the LSPR sensor integrated automated microfluidic control system could perform rapid, multiplex, and multiparallel continuous inflammatory biomarker detection, which would be beneficial for various applications, such as immune status monitoring, diagnosis and prognosis of inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。