Molecular signature of cardiomyocyte clusters derived from human embryonic stem cells

源自人类胚胎干细胞的心肌细胞簇的分子特征

阅读:9
作者:Jane Synnergren, Karolina Akesson, Kerstin Dahlenborg, Hilmar Vidarsson, Caroline Améen, Daniella Steel, Anders Lindahl, Björn Olsson, Peter Sartipy

Abstract

Human embryonic stem cells (hESCs) can differentiate in vitro into spontaneously contracting cardiomyocytes (CMs). These cells may prove extremely useful for various applications in basic research, drug discovery, and regenerative medicine. To fully use the potential of the cells, they need to be extensively characterized, and the regulatory mechanisms that control hESC differentiation toward the cardiac lineage need to be better defined. In this study, we used microarrays to analyze, for the first time, the global gene expression profile of isolated hESC-derived CM clusters. By comparing the clusters with undifferentiated hESCs and using stringent selection criteria, we identified 530 upregulated and 40 downregulated genes in the contracting clusters. To further characterize the family of upregulated genes in the hESC-derived CM clusters, the genes were classified according to their Gene Ontology annotation. The results indicate that the hESC-derived CM clusters display high similarities, on a molecular level, to human heart tissue. Moreover, using the family of upregulated genes, we created protein interaction maps that revealed topological characteristics. We also searched for cellular pathways among the upregulated genes in the hESC-derived CM clusters and identified eight significantly upregulated pathways. Real-time quantitative polymerase chain reaction and immunohistochemical analysis confirmed the expression of a subset of the genes identified by the microarrays. Taken together, the results presented here provide a molecular signature of hESC-derived CM clusters and further our understanding of the biological processes that are active in these cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。