Inhibition of myeloid differentiation 1 specifically in colon with antisense oligonucleotide exacerbates dextran sodium sulfate-induced colitis

反义寡核苷酸特异性抑制结肠中的髓系分化 1 会加剧葡聚糖硫酸钠诱发的结肠炎

阅读:5
作者:Xiaoxing Chen, Huaqin Pan, Jin Li, Guqin Zhang, Shizhe Cheng, Na Zuo, Qiu Zhao, Zhiyong Peng

Abstract

Myeloid differentiation 1 (MD-1), also known as lymphocyte antigen 86 (Ly86), is a soluble protein homologous to MD-2 and forms a complex with radioprotective 105 (RP105). RP105/MD-1 complex negatively regulates toll-like receptor 4 (TLR4) signaling and is involved in several immune disorders. However, the precise role of MD-1 in inflammatory bowel diseases (IBD) remains poorly understood. To further investigate the involvement of MD-1 in IBD, we inhibited MD-1 in colon with antisense oligonucleotide (AS-ODN) and assessed the effect of MD-1 inhibition on dextran sodium sulfate (DSS)-induced colitis. We discovered that MD-1 protein expression was remarkably decreased in both patients with ulcerative colitis and mice with DSS-induced colitis. For the first time, we showed that oral administration of MD-1 AS-ODN to mice significantly suppressed the MD-1 protein levels in colon rather than systemic tissues. Subsequently, we found that MD-1 AS-ODN treated mice were more susceptible to DSS-induced colitis based on loss of body weight, colon length, histological scores, and disease activity index. MD-1 inhibition also significantly enhanced inflammatory cytokines production such as IL-6 and IL-1β in colons. Finally, mice treated with MD-1 AS-ODN exhibited increased messenger RNA levels of TLR4 and MyD88 after DSS exposure and showed enhanced nuclear factor (NF)-κB activation compared with the control. Taken together, specifically suppression of MD-1 in colon tissues with AS-ODN exacerbates DSS-induced experimental colitis in mice, which is possibly related to activation of TLR4/NF-κB signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。