Minimizing Oxidation of Freeze-Dried Monoclonal Antibodies in Polymeric Vials Using a Smart Packaging Approach

采用智能包装方法最大程度减少聚合物瓶中冻干单克隆抗体的氧化

阅读:5
作者:Nicole Härdter, Tim Menzen, Gerhard Winter

Abstract

Primary containers made of cyclic olefin polymer (COP) have recently gained attention since they may overcome several risks and shortcomings of glass containers as they exhibit a high break resistance, biocompatibility, and homogeneous heat transfer during lyophilization. On the downside, COP is more permeable for gases, which can lead to an ingress of oxygen into the container over time. Since oxidation is an important degradation pathway for monoclonal antibodies (mAbs), the continuous migration of oxygen into drug product containers should be avoided overall. To date, no long-term stability studies regarding lyophilizates in polymer vials have been published, potentially because of the unbearable gas permeability. In this study, we demonstrate that after lyophilization in COP vials and storage of these vials in aluminum pouches together with combined oxygen and moisture absorbers ("smart packaging"), oxidation of two lyophilized therapeutic antibodies was as low as in glass vials due to the deoxygenated environment in the pouch. Nevertheless, active removal of oxygen from the primary container below the initial level over time during storage in such "smart" secondary packaging was not achieved. Furthermore, residual moisture was controlled. Overall, the smart packaging reveals a promising approach for long-term stability of biopharmaceuticals; in addition to COP's known benefits, stable, low oxygen and moisture levels as well as the protection from light and cushioning against mechanical shock by the secondary packaging preserve the sensitive products very well.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。