Synaptic Adhesion Molecule Pcdh-γC5 Mediates Synaptic Dysfunction in Alzheimer's Disease

突触粘附分子 Pcdh-γC5 介导阿尔茨海默病中的突触功能障碍

阅读:4
作者:Yanfang Li, Zhicai Chen, Yue Gao, Gaojie Pan, Honghua Zheng, Yunwu Zhang, Huaxi Xu, Guojun Bu, Hui Zheng

Abstract

Synaptic dysfunction and neuronal excitatory/inhibitory imbalance have been implicated in Alzheimer's disease (AD) pathogenesis. Although intensive studies have been focused on the excitatory synaptic system, much less is known concerning the mechanisms mediating inhibitory synaptic dysfunction in AD. We reported previously that protocadherin-γC5 (Pcdh-γC5), a member of clustered Pcdh-γ subfamily of cadherin-type synaptic adhesion proteins, functions to promote GABAergic synaptic transmission. We reveal here that Pcdh-γC5 is enriched in vesicular GABA transporter-positive synaptic puncta and its expression levels are increased in neuronal hyperexcitation conditions, upon β-amyloid (Aβ) treatment, and in amyloid precursor protein (APP)/presenilin-1 (PS1)-transgenic mice of both sexes. This is associated with elevated levels of GABAergic proteins and enhanced synaptic inhibition. Genetic knock-down experiments showed that Pcdh-γC5 modulates spontaneous synaptic currents and Aβ-induced synaptic alterations directly. Our results support a model in which Pcdh-γC5 senses neuronal hyperexcitation to augment GABAergic inhibition. This adaptive mechanism may be dysregulated under chronic excitation conditions such as AD, leading to aberrant Pcdh-γC5 expression and associated synaptic dysfunction.SIGNIFICANCE STATEMENT Synaptic dysfunction is causal for Alzheimer's disease (AD). Here, we reveal a novel pathway that contributes GABAergic synaptic dysfunction in AD mediated by protocadherin-γC5. Our study not only identifies a new mechanism mediating excitatory/inhibitory balance in AD, but may also offer a new target for potential therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。