Secretomes from metastatic breast cancer cells, enriched for a prognostically unfavorable LCN2 axis, induce anti-inflammatory MSC actions and a tumor-supportive premetastatic lung

转移性乳腺癌细胞中的分泌体富含预后不利的 LCN2 轴,可诱导 MSC 的抗炎作用和肿瘤支持的转移前肺

阅读:4
作者:Kayla J Meade, Francesca Sanchez, Analine Aguayo, Nathalie Nadales, Sarkis G Hamalian, Toni L Uhlendorf, Lisa R Banner, Jonathan A Kelber

Abstract

Cancer metastasis is responsible for the clear majority of cancer-related deaths. Survival and expansion of cancer cells at secondary sites requires that these premetastatic microenvironments be primed by primary tumor cells and their secreted factors. Efforts to date have been limited by immune-deficient in vivo models and/or the need for finely-tuned analysis time points that reduce contributions from early-disseminating cancer cells. In this regard, we developed a tumor cell-free syngeneic breast cancer model for characterizing tumor cell secretome-mediated reprogramming of premetastatic tissues. We demonstrate that secretomes from metastatic breast cancer cells differentially regulate the lung and brain, promoting a tumor-supportive lung microenvironment with both elevated CD73 expression and decreased TNFα expression. Using in vitro models of CD73-positive mesenchymal stem cells (MSCs) and macrophages/monocytes, we tested whether MSCs can mediate anti-inflammatory effects of metastatic breast cancer cells. Notably, conditioned media from metastatic Py230 cells reprogrammed the secretomes of MSCs toward an anti-inflammatory state. Mining transcriptome data from Py8119 and Py230 cells revealed a lipocalin 2 (LCN2) axis that is selectively expressed in the metastatic Py230 cells, predicts poor breast cancer patient survival and is elevated in circulating serum of mice chronically treated with conditioned media from Py230 cells. Taken together, these results establish the utility of an immune-competent tumor cell-free model for characterizing the mechanisms of breast cancer cell priming of the premetastatic niche, demonstrate that MSCs can mediate the anti-inflammatory effects of metastatic breast cancer cells and substantiate LCN2 as a promising therapeutic target for blocking breast cancer progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。