Long-term cadmium exposure impairs cognitive function by activating lnc-Gm10532/m6A/FIS1 axis-mediated mitochondrial fission and dysfunction

长期镉暴露通过激活 lnc-Gm10532/m6A/FIS1 轴介导的线粒体裂变和功能障碍损害认知功能

阅读:5
作者:Ping Deng, Huadong Zhang, Liting Wang, Sheng Jie, Qi Zhao, Fengqiong Chen, Yang Yue, Hui Wang, Li Tian, Jia Xie, Mengyan Chen, Yan Luo, Zhengping Yu, Huifeng Pi, Zhou Zhou

Abstract

Cadmium (Cd), a ubiquitous environmental contaminant, is deemed a possible aetiological cause of cognitive disorders in humans. Nevertheless, the exact mechanism by which chronic exposure to Cd causes neurotoxicity is not fully understood. In this study, mouse neuroblastoma cells (Neuro-2a cells) and primary hippocampal neurons were exposed to low-dose (1, 2, and 4 μM for Neuro-2a cells or 0.5, 1, and 1.5 μM for hippocampal neurons) cadmium chloride (CdCl2) for 72 h (h), and male mice (C57BL/6J, 8 weeks) were orally administered CdCl2 (0.6 mg/L, approximately equal to 2.58 μg/kg·bw/d) for 6 months to investigate the effects and mechanism of chronic Cd-induced neurotoxicity. Here, chronic exposure to Cd impaired mitochondrial function by promoting excess reactive oxygen species (ROS) production, altering mitochondrial membrane potential (Δψm) and reducing adenosine triphosphate (ATP) content, contributing to neuronal cell death. Specifically, microarray analysis revealed that the long noncoding RNA Gm10532 (lnc-Gm10532) was most highly expressed in Neuro-2a cells exposed to 4 μM CdCl2 for 72 h compared with controls, and inhibition of lnc-Gm10532 significantly antagonized CdCl2-induced mitochondrial dysfunction and neurotoxicity. Mechanistically, lnc-Gm10532 increased Fission 1 (FIS1) expression and mitochondrial fission by recruiting the m6A writer methyltransferase-like 14 (METTL14) and enhancing m6A modification of Fis1 mRNA. Moreover, lnc-Gm10532 was also required for chronic Cd-induced mitochondrial dysfunction and memory deficits in a rodent model. Therefore, data of this study reveal a new epigenetic mechanism of chronic Cd neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。