Generation of induced neural stem cells with inducible IDH1R132H for analysis of glioma development and drug testing

生成具有可诱导 IDH1R132H 的诱导神经干细胞,用于分析神经胶质瘤的发展和药物测试

阅读:6
作者:Kamila Rosiak-Stec, Dagmara Grot, Piotr Rieske

Abstract

Mutation in isocitrate dehydrogenase 1 (IDH1R132H) occurs in various types of cancer, including low and high grade gliomas. Despite high incidence indicating its central role in tumor initiation and progression there are no targeted therapies directed against this oncogene available in the clinic. This is due to the limited understanding of the role of IDH1R132H in carcinogenesis, which is further propagated by the lack of appropriate experimental models. Moreover, proper in vitro models for analysis of gliomagenesis are required. In this study, we employed a Tet On system to generate human induced neural stem cells with doxycycline-inducible IDH1R132H. Equivalent expression of both forms of IDH1 in the presented model remains similar to that described in tumor cells. Additional biochemical analyses further confirmed tightly controlled gene regulation at protein level. Formation of a functional mutant IDH1 enzyme was supported by the production of D-2-hydroxyglutarate (D2HG). All samples tested for MGMT promoter methylation status, including parental cells, proved to be partially methylated. Analysis of biological effect of IDH1R132H revealed that cells positive for oncogene showed reduced differentation efficiency and viability. Inhibition of mutant IDH1 with selective inhibitor efficiently suppressed D2HG production as well as reversed the effect of mutant IDH1 protein on cell viability. In summary, our model constitutes a valuable platform for studies on the molecular basis and the cell of origin of IDH-mutant glioma (e.g. by editing P53 in these cells and their derivatives), as well as a reliable experimental model for drug testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。