LncRNA MT1DP promotes cadmium-induced DNA replication stress by inhibiting chromatin recruitment of SMARCAL1

LncRNA MT1DP 通过抑制 SMARCAL1 的染色质募集来促进镉诱导的 DNA 复制应激

阅读:5
作者:Wenya Feng, Zijuan Qi, Zheng Dong, Wei Liu, Ming Xu, Ming Gao, Sijin Liu

Abstract

Cadmium (Cd) is a well-known carcinogenic metal and widespread environmental pollutant. The effect of Cd-induced carcinogenesis is partly due to accumulated DNA damage and chromosomal aberrations, but the exact mechanisms underlying the genotoxicity of Cd have not been clearly understood. Here, we found that one long non-coding RNA MT1DP is participated in Cd-induced DNA damage and replication stress. Through analyzing the residents from Cd-contaminated area in Southern China, we found that blood DNA repair genes are down-regulated in individuals with high urine Cd values compared to those with low urine Cd values, which contrast to the blood MT1DP levels. Through in vitro experiments, we found that MT1DP promotes Cd-induced DNA damage response, genome instability and replication fork stalling. Mechanically, upon Cd treatment, ATR is activated to enhance HIF-1α expression, which in turn promotes the transcription level of MT1DP. Subsequently MT1DP is recruited on the chromatin and binds to SMARCAL1 to competitive inhibit latter's interaction with RPA complexes, finally leading to increased replication stress and DNA damage. In summary, this study provides clear evidence for the role of epigenetic regulation on the genotoxic effect of Cd, and MT1DP-mediated replication stress may represent a novel mechanism for Cd-induced carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。