Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms

饮食引起的肥胖通过改变钾通道信号机制损害内皮衍生的超极化

阅读:10
作者:Rebecca E Haddock, T Hilton Grayson, Margaret J Morris, Lauren Howitt, Preet S Chadha, Shaun L Sandow

Background

The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. Methodology/principal findings: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th) order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat) over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca)/IK(Ca)) inhibition; with such activity being impaired in obesity. SK(Ca)-IK(Ca) activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca)-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca) distribution and elevated expression. In contrast, the SK(Ca)-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir)) and Na(+)/K(+)-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K(ir) expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density.

Significance

In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IK(Ca) and Na(+)/K(+)-ATPase, and decreased K(ir) underlie changes in the EDH mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。