Development and Validation of a Method for Hydrolysis and Analysis of Amino Acids in Ruminant Feeds, Tissue, and Milk Using Isotope Dilution Z-HILIC Coupled with Electrospray Ionization Triple Quadrupole LC-MS/MS

使用同位素稀释 Z-HILIC 结合电喷雾电离三重四极杆 LC-MS/MS 开发并验证反刍动物饲料、组织和牛奶中氨基酸的水解和分析方法

阅读:5
作者:Andres F Ortega, Hui Zhao, Michael E Van Amburgh

Abstract

Current analytical methods for amino acid (AA) analysis in ruminant nutrition are time-consuming and expensive. This study aimed to develop a method for AA analysis that is faster, more efficient, rugged, and accessible. Four representative matrixes were selected for method development and validation: milk, tissue, feed, and soy flour standard reference material from National Institute of Standards and Technology. Acid and alkaline hydrolysis were used to analyze 18 AA. Separation of AA was performed using a Z-HILIC column in an 18-min run coupled to a triple quadrupole LC/MS system in positive and negative electrospray ionization for identification and quantitation. The method was evaluated for recovery, precision, calibration curve linearity, and limits of detection (LODs) and limits of quantitation (LOQs) and applied to other feed samples. Good quantitation results were achieved for all AA, with coefficients of determination (R2) over 0.995; LODs at 0.2-28.2 and LOQs at 0.7-94.1 ng/mL; intraday and interday precision <14.9% relative standard deviation; blank recovery between 75.6 and 116.2%; and sample recovery between 75.6 and 118.0%. Overall, AA concentrations were similar to literature values, and there was a tendency for higher N recovery as AA. In conclusion, an efficient and robust method was validated to routinely analyze AA for appropriate characterization in diet formulation for dairy cattle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。