Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells

化疗可诱导癌症相关成纤维细胞表型,激活乳腺癌细胞中的旁分泌 Hedgehog-GLI 信号传导

阅读:7
作者:Maria Peiris-Pagès, Federica Sotgia, Michael P Lisanti

Abstract

Cancer cells recruit normal cells such as fibroblasts to establish reactive microenvironments. Via metabolic stress, catabolism and inflammation, these cancer-associated fibroblasts set up a synergistic relationship with tumour cells, that contributes to their malignancy and resistance to therapy. Given that chemotherapy is a systemic treatment, the possibility that healthy cell damage affects the metastatic risk or the prospect of developing a second malignancy becomes relevant. Here, we demonstrate that standard chemotherapies phenotypically and metabolically transform stromal fibroblasts into cancer-associated fibroblasts, leading to the emergence of a highly glycolytic, autophagic and pro-inflammatory microenvironment. This catabolic microenvironment, in turn, activates stemness (Sonic hedgehog/GLI signalling), antioxidant response and interferon-mediated signalling, in adjacent breast cancer cells. Thus, we propose a model by which chemotherapy-induced catabolism in healthy fibroblasts constitutes a source of energy-rich nutrients and inflammatory cytokines that would activate stemness in adjacent epithelial cells, possibly triggering new tumorigenic processes. In this context, immune cell recruitment would be also stimulated to further support malignancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。