RPA70 depletion induces hSSB1/2-INTS3 complex to initiate ATR signaling

RPA70 耗竭诱导 hSSB1/2-INTS3 复合物启动 ATR 信号传导

阅读:8
作者:Ananya Kar, Manpreet Kaur, Tanushree Ghosh, Md Muntaz Khan, Aparna Sharma, Ritu Shekhar, Akhil Varshney, Sandeep Saxena

Abstract

The primary eukaryotic single-stranded DNA-binding protein, Replication protein A (RPA), binds to single-stranded DNA at the sites of DNA damage and recruits the apical checkpoint kinase, ATR via its partner protein, ATRIP. It has been demonstrated that absence of RPA incapacitates the ATR-mediated checkpoint response. We report that in the absence of RPA, human single-stranded DNA-binding protein 1 (hSSB1) and its partner protein INTS3 form sub-nuclear foci, associate with the ATR-ATRIP complex and recruit it to the sites of genomic stress. The ATRIP foci formed after RPA depletion are abrogated in the absence of INTS3, establishing that hSSB-INTS3 complex recruits the ATR-ATRIP checkpoint complex to the sites of genomic stress. Depletion of homologs hSSB1/2 and INTS3 in RPA-deficient cells attenuates Chk1 phosphorylation, indicating that the cells are debilitated in responding to stress. We have identified that TopBP1 and the Rad9-Rad1-Hus1 complex are essential for the alternate mode of ATR activation. In summation, we report that the single-stranded DNA-binding protein complex, hSSB1/2-INTS3 can recruit the checkpoint complex to initiate ATR signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。