Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer

前列腺癌中雄烷二醇在肿瘤内生物转化为双氢睾酮,从而激活雄激素受体

阅读:9
作者:James L Mohler, Mark A Titus, Suxia Bai, Brian J Kennerley, Fred B Lih, Kenneth B Tomer, Elizabeth M Wilson

Abstract

The androgen receptor (AR) mediates the growth of benign and malignant prostate in response to dihydrotestosterone (DHT). In patients undergoing androgen deprivation therapy for prostate cancer, AR drives prostate cancer growth despite low circulating levels of testicular androgen and normal levels of adrenal androgen. In this report, we demonstrate the extent of AR transactivation in the presence of 5α-androstane-3α,17β-diol (androstanediol) in prostate-derived cell lines parallels the bioconversion of androstanediol to DHT. AR transactivation in the presence of androstanediol in prostate cancer cell lines correlated mainly with mRNA and protein levels of 17β-hydroxysteroid dehydrogenase 6 (17β-HSD6), one of several enzymes required for the interconversion of androstanediol to DHT and the inactive metabolite androsterone. Levels of retinol dehydrogenase 5, and dehydrogenase/reductase short-chain dehydrogenase/reductase family member 9, which also convert androstanediol to DHT, were lower than 17β-HSD6 in prostate-derived cell lines and higher in the castration-recurrent human prostate cancer xenograft. Measurements of tissue androstanediol using mass spectrometry demonstrated androstanediol metabolism to DHT and androsterone. Administration of androstanediol dipropionate to castration-recurrent CWR22R tumor-bearing athymic castrated male mice produced a 28-fold increase in intratumoral DHT levels. AR transactivation in prostate cancer cells in the presence of androstanediol resulted from the cell-specific conversion of androstanediol to DHT, and androstanediol increased LAPC-4 cell growth. The ability to convert androstanediol to DHT provides a mechanism for optimal utilization of androgen precursors and catabolites for DHT synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。