Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex

基底外侧杏仁核失活会损害小脑皮层学习诱导的长期增强

阅读:5
作者:Lan Zhu, Tiziana Sacco, Piergiorgio Strata, Benedetto Sacchetti

Abstract

Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA). In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF) to Purkinje cell (PC) synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP). Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。