Motor neurons transplantation alleviates neurofibrogenesis during chronic degeneration by reversibly regulating Schwann cells epithelial-mesenchymal transition

运动神经元移植通过可逆性调节雪旺细胞上皮-间质转化减轻慢性退化过程中的神经纤维形成

阅读:5
作者:Zhaoyang Wu, Haiqi Ding, Yang Chen, Changyu Huang, Xiaoqing Chen, Hongxin Hu, Yongfa Chen, Wenming Zhang, Xinyu Fang

Abstract

A novel understanding of peripheral nerve injury is epithelial-mesenchymal transition (EMT), which characterizes the process of dedifferentiation and transformation of Schwann cells after nerve injury. Despite being regarded as an important mechanism for healing nerve injuries, long-term EMT is the primary cause of fibrosis in other tissue organs. The potential mechanism promoting neurofibrosis in the process of chronic degeneration of nerve injury and the effects of motor neurons (MNs) transplantation on neurofibrosis and repair of nerve injury were studied by transcriptome sequencing and bioinformatics analysis, which were confirmed by in vivo and in vitro experiments. Even 3 months after nerve injury, the distal nerve maintained high levels of transforming growth factor β-1 (TGFβ-1) and Snail family transcriptional repressor 2 (Snai2). The microenvironment TGFβ-1, Snai2 and endogenous TGFβ-1 formed a positive feedback loop in vivo and in vitro, which may contribute to the sustained EMT state and neurofibrogenesis in the distal injured nerve. Inhibiting TGFβ-1 and Snai2 expression and reversing EMT can be achieved by transferring MNs to distal nerves, and the removal of transplanted MNs is capable of reactivating EMT and promoting the growth of proximal axons. In conclusion, EMT persisting can be an explanation for distal neurofibrosis and a potential therapeutic target. By reversibly regulating EMT, MNs transplantation can alleviate neurofibrogenesis of distal nerve in chronic degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。