Circ_0134944 inhibits osteogenesis through miR-127-5p/PDX1/SPHK1 pathway

Circ_0134944 通过 miR-127-5p/PDX1/SPHK1 通路抑制成骨作用

阅读:5
作者:Da-Wei Zhang, Tao Chen, Jin-Xiang Li, Hong-Gang Wang, Zong-Wen Huang, Hai Lv

Conclusions

Taken together, these results demonstrate that circ_0134944 inhibit osteogenesis via miR-127-5p/PDX1/SPHK1 axis. Thus, the present study offered evidence that circ_0134944/miR-127-5p/PDX1/SPHK1 axis could be a potential therapeutic target for PMOP.

Methods

qRT-PCR was used to determine the expression of circ_0134944, miR-127-5p, PDX1 and SPHK1 in the blood mononuclear cells (BMCs) of PMOP patients. Bone marrow mesenchymal stem cells (BMSCs) were used as the cellular model. Western blotting and qRT-PCR were used to determine the expression of osteogenesis-related genes (Runx2, OPN, OCN). ALP and Alizarin Red S staining were performed to evaluate osteogenic differentiation. The interactions between circ_0134944 and miR-127-5p, miR-127-5p and PDX1, PDX1 and SPHK1 were determined by dual-luciferase reporter and ChIP assay.

Results

Circ_0134944, PDX1 and SPHK1 were upregulated while miR-127-5p was downregulated in PMOP patients. Enhanced expression of circ_0134944 suppressed osteogenesis, which was then reversed by miR-127-5p overexpression. The binding between circ_0134944 and miR-127-5p, PDX1 and miR-127-5p were confirmed by dual-luciferase reporter assay. Moreover, PDX1 was enriched in the promoter region of SPHK1, and SPHK1 overexpression prevented the promotion of osteogenesis induced by miR-127-5p overexpression. Conclusions: Taken together, these results demonstrate that circ_0134944 inhibit osteogenesis via miR-127-5p/PDX1/SPHK1 axis. Thus, the present study offered evidence that circ_0134944/miR-127-5p/PDX1/SPHK1 axis could be a potential therapeutic target for PMOP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。