Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis

结核分枝杆菌和耻垢分枝杆菌之间肽聚糖合成的不同时空动态

阅读:5
作者:Helene Botella, Guangli Yang, Ouathek Ouerfelli, Sabine Ehrt, Carl F Nathan, Julien Vaubourgeix

Abstract

Peptidoglycan (PG), a polymer cross-linked by d-amino acid-containing peptides, is an essential component of the bacterial cell wall. We found that a fluorescent d-alanine analog (FDAA) incorporates chiefly at one of the two poles in Mycobacterium smegmatis but that polar dominance varies as a function of the cell cycle in Mycobacterium tuberculosis: immediately after cytokinesis, FDAAs are incorporated chiefly at one of the two poles, but just before cytokinesis, FDAAs are incorporated comparably at both. These observations suggest that mycobacterial PG-synthesizing enzymes are localized in functional compartments at the poles and septum and that the capacity for PG synthesis matures at the new pole in M. tuberculosis Deeper knowledge of the biology of mycobacterial PG synthesis may help in discovering drugs that disable previously unappreciated steps in the process.IMPORTANCE People are dying all over the world because of the rise of antimicrobial resistance to medicines that could previously treat bacterial infections, including tuberculosis. Here, we used fluorescent d-alanine analogs (FDAAs) that incorporate into peptidoglycan (PG)-the synthesis of which is an attractive drug target-combined with high- and super-resolution microscopy to investigate the spatiotemporal dynamics of PG synthesis in M. smegmatis and M. tuberculosis FDAA incorporation predominates at one of the two poles in M. smegmatis In contrast, while FDAA incorporation into M. tuberculosis is also polar, there are striking variations in polar dominance as a function of the cell cycle. This suggests that enzymes involved in PG synthesis are localized in functional compartments in mycobacteria and that M. tuberculosis possesses a mechanism for maturation of the capacity for PG synthesis at the new pole. This may help in discovering drugs that cripple previously unappreciated steps in the process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。