Conclusion
The present study indicated that hypoxia increased autophagy and apoptosis via IP7-mediated Akt/mTOR signaling pathway of BM-MSCs. It may provide a new potential therapy target for myocardial infarction (MI).
Methods
BM-MSCs isolated from adult male C57BL/6 mice were exposed to normoxic condition and hypoxic stress for 6 h, 12 h, and 24 h, respectively. Then, flow cytometry detected the characteristics of BM-MSCs. Furthermore, N6-(p-nitrobenzyl) purine (TNP) was administrated to inhibit inositol pyrophosphates (IP7). TUNEL assay determined the apoptosis in BM-MSCs with hypoxia. Meanwhile, RFP-GFP-LC3 plasmid transfection and transmission microscope was used for measuring autophagy. In addition, Western blotting assay evaluated protein expressions.
Objective
To investigate the potential effect of IP7 on the autophagy and apoptosis of bone marrow mesenchymal stem cells (BM-MSCs) caused by hypoxia.
Results
Hypoxic injury increased the autophagy and apoptosis of BM-MSCs. At the same time, hypoxic injury enhanced the production of IP7. Moreover, hypoxia decreased the activation of Akt/mTOR signaling pathway. At last, TNP (inhibitor of IP7) repressed the increased autophagy and apoptosis of BM-MSCs under hypoxia.
