Transcriptomic Analysis of Drought Stress Responses in Ammopiptanthus mongolicus Leaves Using the RNA-Seq Technique

利用 RNA-Seq 技术对沙冬青叶片干旱胁迫反应进行转录组分析

阅读:5
作者:Fei Gao, Jianyue Wang, Shanjun Wei, Zhanglei Li, Ning Wang, Huayun Li, Jinchao Feng, Hongjie Li, Yijun Zhou, Feixiong Zhang

Abstract

Ammopiptanthus mongolicus (Maxim. Ex Kom.) Cheng f., a relic tree of the Tertiary period, plays a critical role in maintaining desert ecosystems in the Mid-Asia region. Genome-scale gene expression profiling studies will provide deep insight into the molecular mechanism underlying the drought tolerance of A. mongolicus. In the present study, we investigated the transcriptional changes induced by drought treatment in A. mongolicus leaves by establishing a comprehensive transcriptome database and then performing a Digital Gene Expression (DGE) analysis using Solexa sequencing technology. A comprehensive transcriptome database was obtained by assembling the Illumina unigenes with expressed sequence tags (EST) available publicly, and other high throughput sequencing data. To analyze the dynamic and complicated gene regulation network during PEG6000-induced drought treatment in leaves of A. mongolicus, a time-course gene expression analysis was performed using tag-based DGE technology, which identified 437, 1,247 and 802 differentially expressed transcripts in 1, 24 and 72 h drought stress libraries, respectively. GO and KEGG analyses revealed hormone signal transduction and phenylpropanoid biosynthesis were enriched during drought treatment. A batch of drought-regulated transcription factor transcripts were identified, including the subsets of HD-ZIP, bZIP, WRKY, AP2/ERF and bHLH family members, which may play roles in drought response in A. mongolicus. The sequence collection assembled in the present study represents one of the most comprehensive transcriptome databases for A. mongolicus currently. The differentially expressed transcripts identified in our study provide a good start for identifying the key genes in stress response and performing functional analysis to reveal their roles in stress adaptation in planta.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。