MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN

MiRNA-21 通过下调 PTEN 在电离辐射诱导的上皮间质转化 (EMT) 中发挥作用

阅读:5
作者:Zheng Liu, Xin Liang, Xueping Li, Xiaodan Liu, Maoxiang Zhu, Yongqing Gu, Pingkun Zhou

Abstract

Radiation-induced pulmonary fibrosis (RIPF) results from thoracic radiotherapy and severely limits the use of radiotherapy. Recent studies suggest that epithelium-to-mesenchymal transition (EMT) contributes to pulmonary fibrosis. Although miRNA dysregulation participates in a variety of pathophysiologic processes, their roles in fibrotic lung diseases and EMT are unclear. In this study, we aimed to identify key miRNAs involved in this process using a mouse model of RIPF previously established by irradiation with a single dose (20 Gy) of 60Co γ-rays. At 2-weeks post-irradiation, a set of significantly upregulated miRNAs was identified in lung tissue by miRNA array analysis. This included miR-21, which has been reported to contribute to the pulmonary fibrotic response induced by stereotactic body radiotherapy. Here, we showed that miR-21 expression increased in parallel with EMT progression in the lungs of irradiated mice. Ectopic miR-21 expression promoted EMT progression in lung epithelial cells. Furthermore, downregulation of miR-21 expression by transfection of its inhibitor inhibited ionizing radiation (IR)-induced EMT. Knockdown of PTEN, which is the functional target of miR-21, reversed the attenuation of IR-induced EMT mediated by miR-21 downregulation. Radiation treatment decreased PTEN expression and increased Akt phosphorylation; these effects were abolished by the miR-21 inhibitor. MiR-21 overexpression in lung epithelial cell also downregulated PTEN expression and upregulated Akt phosphorylation. In conclusion, we have demonstrated that miR-21 functions as a key regulator of IR-induced EMT in lung epithelial cells via the PTEN/Akt pathway. Targeting miR-21 is implicated as a novel therapeutic strategy for the prevention of RIPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。