Glucocorticoid-Induced Reductions of Myelination and Connexin 43 in Mixed Central Nervous System Cell Cultures Are Prevented by Mifepristone

米非司酮可预防糖皮质激素诱导的混合中枢神经系统细胞培养物中髓鞘形成和连接蛋白43的减少

阅读:2
作者:José Javier Miguel-Hidalgo ,Kathleen Carter ,Preston Hardin Deloach ,Leon Sanders ,Yi Pang

Abstract

Repeated stress induces systemic elevations in glucocorticoid levels. Stress is also associated with alterations in central nervous system astrocytes and oligodendrocytes that involve connexins and myelin proteins. Corticosteroid elevation seems a major factor in stress-induced neuropathology. Changes in astrocyte connexins and myelin components may be important mediators for the neurological effects of corticosteroid elevations. Two primary cell culture models, myelination culture from rat embryonic spinal cord (SC) or cerebral cortex (CC) consisting of neurons and glial cells (oligodendrocytes, microglia and astrocytes), and mixed astrocyte-and-oligodendrocyte culture prepared from postnatal rat CC, were used in this study. Cell cultures were treated with either vehicle, corticosterone (CORT) with or without glucocorticoid receptor antagonist mifepristone, or dexamethasone (DEX) during the period of in vitro myelination. Immunoreactivity of astrocyte connexin 43 (Cx43) and oligodendrocyte myelin basic protein (MBP), or the myelination index (co-localization of MBP and phosphorylated neurofilament) was determined by double immunofluorescent labeling. Oligodendrocyte morphology was evaluated by Sholl analysis. Prolonged exposure to CORT or DEX induced dose-dependent reduction of the myelination index, and of immunostaining for MBP and Cx43 in SC and CC myelination cultures, which was prevented by mifepristone. In glial cultures single CORT or DEX exposure caused shrinkage and simplification of/' MBP- or CNPase-positive oligodendrocyte processes. The results support that concurrent effects of glucocorticoids on myelination and astrocyte Cx43 immunoreactivity are mediated by glucocorticoid receptors and may partially account for the involvement of CNS glia in the pathological effects of prolonged stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。