Preproglucagon neurons project widely to autonomic control areas in the mouse brain

前胰高血糖素原神经元广泛投射到小鼠大脑的自主神经控制区域

阅读:7
作者:I J Llewellyn-Smith, F Reimann, F M Gribble, S Trapp

Abstract

Glucagon-like peptide 1 (GLP-1) and its analogue exendin-4 inhibit food intake, reduce blood glucose levels and increase blood pressure and heart rate by acting on GLP-1 receptors in many brain regions. Within the CNS, GLP-1 is produced only by preproglucagon (PPG) neurons. We suggest that PPG neurons mediate the central effects of GLP-1 by modulating sympathetic and vagal outflow. We therefore analysed the projections of PPG neurons to brain sites involved in autonomic control. In transgenic mice expressing yellow fluorescent protein (YFP) under the control of the PPG promoter, we assessed YFP-immunoreactive innervation using an anti-GFP antiserum and avidin-biotin-peroxidase. PPG neurons were intensely YFP-immunoreactive and axons could be easily discriminated from dendrites. YFP-immunoreactive cell bodies occurred primarily within the caudal nucleus tractus solitarius (NTS) with additional somata ventral to the hypoglossal nucleus, in raphé obscurus and in the intermediate reticular nucleus. The caudal NTS contained a dense network of dendrites, some of which extended into the area postrema. Immunoreactive axons were widespread throughout NTS, dorsal vagal nucleus and reticular nucleus with few in the hypoglossal nucleus and pyramids. The dorsomedial and paraventricular hypothalamic nuclei, ventrolateral periaqueductal grey and thalamic paraventricular nucleus exhibited heavy innervation. The area postrema, rostral ventrolateral medulla, pontine central grey, locus coeruleus/Barrington's nucleus, arcuate nucleus and the vascular organ of the lamina terminalis were moderately innervated. Only a few axons occurred in the amygdala and subfornical organ. Our results demonstrate that PPG neurons innervate primarily brain regions involved in autonomic control. Thus, central PPG neurons are ideally situated to modulate sympathetic and parasympathetic outflow through input at a variety of central sites. Our data also highlight that immunohistochemistry improves detection of neurons expressing YFP. Hence, animals in which specific populations of neurons have been genetically-modified to express fluorescent proteins are likely to prove ideal for anatomical studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。