An oxidative metabolic pathway of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEHU) from alginate in an alginate-assimilating bacterium

藻酸盐同化细菌中藻酸盐中 4-脱氧-L-赤式-5-己糖醛酸 (DEHU) 的氧化代谢途径

阅读:4
作者:Ryuji Nishiyama, Takao Ojima, Yuki Ohnishi, Yasuhiro Kumaki, Tomoyasu Aizawa, Akira Inoue

Abstract

Alginate-assimilating bacteria degrade alginate into an unsaturated monosaccharide, which is converted into 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEHU). DEHU is reduced to 2-keto-3-deoxy-D-gluconate by a DEHU-specific reductase using NAD(P)H. This is followed by pyruvate production via the Entner-Doudoroff pathway. Previously, we identified FlRed as a DEHU reductase in an alginate-assimilating bacterium, Flavobacterium sp. strain UMI-01. Here, we showed that FlRed can also catalyze the oxidation of DEHU with NAD+, producing 2-keto-3-deoxy-D-glucarate (KDGR). FlRed showed a predilection for NADH and NAD+ over NADPH and NADP+, respectively, and the Km value for NADH was approximately 2.6-fold less than that for NAD+. Furthermore, we identified two key enzymes, FlDet and FlDeg, for KDGR catabolism. FlDet was identified as an enzyme of the ribonuclease activity regulator A family, which converts KDGR to α-ketoglutaric semialdehyde (α-KGSA). FlDeg, a type II α-KGSA dehydrogenase, generated α-ketoglutaric acid by oxidizing the aldehyde group of α-KGSA using NAD(P)+. Consequently, unlike the conventional DEHU reduction pathway, DEHU can be directly converted to α-ketoglutaric acid without consuming NAD(P)H. Alginate upregulated the expression of not only FlRed and two enzymes of the DEHU-reduction pathway, but also FlDet and FlDeg. These results revealed dual pathways of DEHU metabolism involving reduction or oxidation by FlRed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。