Mechanisms and targeted reversion/prevention of hepatic fibrosis caused by the non-hereditary toxicity of benzo(a)pyrene

苯并(a)芘非遗传毒性导致肝纤维化的机制及靶向逆转/预防

阅读:7
作者:Xinru Du, Ming Jin, Ruzhi Li, Fei Zhou, Yuanze Sun, Qinliang Mo, Sisi Song, Na Dong, Shuoke Duan, Maoxuan Li, Ming Lu, Chi Zhang, Huiwei He, Xiaojun Yang, Chengwu Tang, Yuan Li

Abstract

The effect of long term exposure to low concentrations of environmental pollutants on hepatic disorders is a major public health concern worldwide. Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants. In recent years, an increasing number of studies have focused on the deleterious effects of low concentrations of PAHs in the initiation or exacerbation of the progression of chronic liver disease. However, the underlying molecular mechanisms and effective intervention methods remain unclear. Here, we found that in hepatocytes, a low concentration of benzo(a)pyrene (B[a]P, an indicator of PAHs) chronic exposure continuously activated 14-3-3η via an epigenetic accumulation of DNA demethylation. As a "switch like" factor, 14-3-3η activated its downstream PI3K/Akt signal, which in turn promoted vascular endothelial growth factor (VEGF) production and secretion. As the characteristic fibrogenic paracrine factor regulated by B[a]P/14-3-3η, VEGF significantly induced the neovascularization and activation of hepatic stellate cells, leading to the development of hepatic fibrosis. Importantly, targeted 14-3-3η by using its specific inhibitor invented by our lab could prevent B[a]P-induced hepatic fibrosis, and could even reverse existent hepatic fibrosis caused by B[a]P. The present study not only revealed novel mechanisms, but also proposed an innovative approach for the targeted reversion/prevention of the harmful effects of exposure to PAHs on chronic liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。