Downregulation of Src-family tyrosine kinases by Srcasm and c-Cbl: A comparative analysis

Srcasm 和 c-Cbl 对 Src 家族酪氨酸激酶的下调:比较分析

阅读:6
作者:Vivian Lee, Thomas D Griffin, Yoko Suzuki-Horiuchi, Lily Wushanley, Yerin Kweon, Christine Marshall, Weijie Li, Elias Ayli, Adele Haimovic, Aliya Hines, John T Seykora

Aim

Elevated Src-Family tyrosine kinase (SFK) activity drives carcinogenesis in vivo and elevated SFK activity is found ubiquitously in human cancers. Although human squamous cell carcinomas (SCCs) demonstrate increased SFK activity, in silico analysis of SCCs demonstrates that only 0.4% of lesions contain mutations that could potentially increase SFK activity; similarly, a low frequency of activating SFK mutations is found in other major cancers. These findings indicate that SFK activation in cancers likely is not due to activating mutations but alternative mechanisms. To evaluate potential alternative mechanisms, we evaluated the selectivity of c-Cbl and Srcasm in downregulating native and activated mutant forms of SFKs. Materials and

Conclusion

Given the rarity of activating SFK mutations in human cancer, these data indicate that decreasing Srcasm level/function may represent a mechanism for increasing SFK activity in SCC and other human tumors.

Methods

We co-transfected native and activated forms of Src and Fyn with c-Cbl and Srcasm into HaCaT cells and monitored the ability of Srcasm and c-Cbl to downregulate native and activated forms of SFKs by Western blotting. The mechanism of downregulation was probed using mutant forms of Srcasm and c-Cbl and using proteosomal and lysosomal inhibition.

Results

The data indicate that Srcasm downregulates native Fyn and Src more effectively than c-Cbl, whereas c-Cbl preferentially downregulates activated SFK mutants, including Fyn Y528F, more effectively than Srcasm. Srcasm downregulates SFKs through a lysosomal-dependent mechanism while c-Cbl utilizes a proteosomal-dependent mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。