Stepwise differentiation and functional characterization of human induced pluripotent stem cell-derived choroidal endothelial cells

人类诱导性多能干细胞衍生的脉络膜内皮细胞的逐步分化和功能表征

阅读:6
作者:Kelly Mulfaul, Joseph C Giacalone, Andrew P Voigt, Megan J Riker, Dalyz Ochoa, Ian C Han, Edwin M Stone, Robert F Mullins, Budd A Tucker

Background

Endothelial cells (ECs) are essential regulators of the vasculature, lining arteries, veins, and capillary beds. While all ECs share a number of structural and molecular features, heterogeneity exists depending on their resident tissue. ECs lining the choriocapillaris in the human eye are lost early in the pathogenesis of age-related macular degeneration (AMD), a common and devastating form of vision loss. In order to study the mechanisms leading to choroidal endothelial cell (CEC) loss and to develop reagents for repairing the choroid, a reproducible in vitro model, which closely mimic CECs, is needed. While a number of protocols have been published to direct induced pluripotent stem cells (iPSCs) into ECs, the goal of this study was to develop

Conclusion

ECs generated following this protocol exhibit functional and biochemical characteristics of CECs. This protocol will be useful for developing in vitro models toward understanding the mechanisms of CEC loss early in AMD.

Methods

We transduced human iPSCs with a CDH5p-GFP-ZEO lentiviral vector and selected for transduced iPSCs using blasticidin. We generated embryoid bodies (EBs) from expanded iPSC colonies and transitioned from mTESR™1 to EC media. One day post-EB formation, we induced mesoderm fate commitment via addition of BMP-4, activin A, and FGF-2. On day 5, EBs were adhered to Matrigel-coated plates in EC media containing vascular endothelial cell growth factor (VEGF) and connective tissue growth factor (CTGF) to promote CEC differentiation. On day 14, we selected for CECs using either zeocin resistance or anti-CD31 MACS beads. We expanded CECs post-selection and performed immunocytochemical analysis of CD31, carbonic anhydrase IV (CA4), and RGCC; tube formation assays; and transmission electron microscopy to access vascular function.

Results

We report a detailed protocol whereby we direct iPSC differentiation toward mesoderm and utilize CTGF to specify CECs. The CDH5p-GFP-ZEO lentiviral vector facilitated the selection of iPSC-derived ECs that label with antibodies directed against CD31, CA4, and RGCC; form vascular tubes in vitro; and migrate into empty choroidal vessels. CECs selected using either antibiotic selection or CD31 MACS beads showed similar characteristics, thereby making this protocol easily reproducible with or without lentiviral vectors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。