Prenatal Nutritional Intervention Reduces Autistic-Like Behavior Rates Among Mthfr-Deficient Mice

产前营养干预可降低 Mthfr 缺乏小鼠的自闭症样行为发生率

阅读:5
作者:Ayelet Orenbuch, Keren Fortis, Siraphat Taesuwan, Raz Yaffe, Marie A Caudill, Hava M Golan

Abstract

The causes and contributing factors of autism spectrum disorders (ASD) are poorly understood. One gene associated with increased risk for ASD is methylenetetrahydrofolate-reductase (MTHFR), which encodes a key enzyme in one carbon (C1) metabolism. The MTHFR 677C > T polymorphism reduces the efficiency of methyl group production with possible adverse downstream effects on gene expression. In this study, the effects of prenatal and/or postnatal diets enriched in C1 nutrients on ASD-like behavior were evaluated in Mthfr-deficient mice. Differences in intermediate pathways between the mice with and without ASD-like behaviors were tested. The findings indicate that maternal and offspring Mthfr deficiency increased the risk for an ASD-like phenotype in the offspring. The risk of ASD-like behavior was reduced in Mthfr-deficient mice supplemented with C1 nutrients prenatally. Specifically, among offspring of Mthfr+/- dams, prenatal diet supplementation was protective against ASD-like symptomatic behavior compared to the control diet with an odds ratio of 0.18 (CI:0.035, 0.970). Changes in major C1 metabolites, such as the ratios between betaine/choline and SAM/SAH in the cerebral-cortex, were associated with ASD-like behavior. Symptomatic mice presenting ASD-like behavior showed decreased levels of GABA pathway proteins such as GAD65/67 and VGAT and altered ratios of the glutamate receptor subunits GluR1/GluR2 in males and NR2A/NR2B in females. The altered ratios, in turn, favor receptor subunits with higher sensitivity to neuronal activity. Our study suggests that MTHFR deficiency can increase the risk of ASD-like behavior in mice and that prenatal dietary intervention focused on MTHFR genotypes can reduce the risk of ASD-like behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。