Examination of VLC-PUFA-deficient photoreceptor terminals

检查 VLC-PUFA 缺乏的光感受器终端

阅读:8
作者:Lea D Bennett, Blake R Hopiavuori, Richard S Brush, Michael Chan, Matthew J Van Hook, Wallace B Thoreson, Robert E Anderson

Conclusions

Very long chain PUFAs affect rod function by contributing to synaptic vesicle size, which may alter the dynamics of synaptic transmission, ultimately resulting in a loss of neuronal connectivity and death of rod photoreceptors.

Methods

Retina function was assessed in wild-type (WT) and KO by electroretinography. Outer plexiform structure was evaluated by immunofluorescence and transmission electron microscopy. Single-cell recordings measured rod ion channel operation and rod bipolar glutamate signaling. Sucrose gradient centrifugation was used to isolate synaptosomes from bovine retina. Proteins and lipids were analyzed by Western blotting and tandem mass spectroscopy, respectively.

Purpose

Juvenile-onset autosomal dominant Stargardt-like macular dystrophy (STGD3) is caused by mutations in ELOVL4 (elongation of very long fatty acids-4), an elongase necessary for the biosynthesis of very long chain fatty acids (VLC-FAs ≥ C26). Photoreceptors are enriched with VLC polyunsaturated fatty acids (VLC-PUFAs), which are necessary for long-term survival of rod photoreceptors. The purpose of these studies was to determine the effect of deletion of VLC-PUFAs on rod synaptic function in retinas of mice conditionally depleted (KO) of Elovl4.

Results

Inner retinal responses (b-wave, oscillatory potentials, and scotopic threshold responses) of the ERG were decreased in the KO mice compared to controls. However the rod ion channel operation and bipolar glutamate responses were comparable between groups. Biochemical analysis revealed that conventional and ribbon synapses have VLC-PUFAs. Ultrastructural analysis showed that the outer plexiform layer was disorganized and the diameter of vesicles in rod terminals was smaller in the KO mice. Conclusions: Very long chain PUFAs affect rod function by contributing to synaptic vesicle size, which may alter the dynamics of synaptic transmission, ultimately resulting in a loss of neuronal connectivity and death of rod photoreceptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。