Highly Sensitive Room Temperature H2S Gas Sensor Based on the Nanocomposite of MoS2-ZnCo2O4

基于 MoS2-ZnCo2O4 纳米复合材料的高灵敏度室温 H2S 气体传感器

阅读:5
作者:Shama Sadaf, Hongpeng Zhang, Daru Chen, Ali Akhtar

Abstract

The stacking 2D materials, such as molybdenum disulfide (MoS2), are among the most promising candidates for detecting H2S gas. Herein, we designed a series of novel nanocomposites consisting of MoS2 and ZnCo2O4. These materials were synthesized via a simple hydrothermal method. The microstructure and morphology of nanocomposites were studied by different characteristics such as X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy. These nanocomposites were used as gas sensors, and the highest response (6.6) toward 10 ppm of H2S was detected by the gas sensor of MZCO-6 (having MoS2 contents 0.060 g) among all other tested sensors. The response value (Ra/Rg) was almost three times that of pure ZnCo2O4 (Ra/Rg = 2). In addition, the sensor of MZCO-6 exposed good selectivity, short response/recovery time (12/28 s), long-term stability (28 days), and a low detection limit (0.5 ppm) toward H2S gas at RT. The excellent performance of MZCO-6 may be attributed to some features of MoS2, such as stack structure, higher BET and surface area and active sites, a synergistic effect, etc. This simple fabrication sensor provides a novel idea for detecting H2S gas at RT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。