Hydrogen sulfide lowers hyperhomocysteinemia dependent on cystathionine γ lyase S-sulfhydration in ApoE-knockout atherosclerotic mice

硫化氢降低 ApoE 基因敲除动脉粥样硬化小鼠中依赖于胱硫醚γ裂解酶 S-硫化作用的高同型半胱氨酸血症

阅读:6
作者:Jinhui Fan, Fengjiao Zheng, Shuangyue Li, Cangting Cui, Shan Jiang, Jun Zhang, Jun Cai, Qinghua Cui, Jichun Yang, Xinjing Tang, Guoheng Xu, Bin Geng

Background and purpose

Hydrogen sulfide donors can block the cardiovascular injury of hyperhomocysteinemia. H2 S also lowers serum homocysteine in rats with mild hyperhomocysteinemia, but the pharmacological mechanism is unknown. The present study investigated the mechanism(s) involved. Experimental approach: ApoE-knockout mice were fed a Paigen diet and L-methionine in drinking water for 16 weeks to create a mouse model of atherosclerosis with hyperhomocysteinemia. H2 S donors (NaHS and GYY4137) were administered by intraperitoneal injection. We also assayed the H2 S produced (by methylene blue assay and mito-HS [H2 S fluorescence probe]), cystathionine γ lyase (CSE) mRNA and protein expression, and CSE sulfhydration and nitrosylation and its activity. Key

Purpose

Hydrogen sulfide donors can block the cardiovascular injury of hyperhomocysteinemia. H2 S also lowers serum homocysteine in rats with mild hyperhomocysteinemia, but the pharmacological mechanism is unknown. The present study investigated the mechanism(s) involved. Experimental approach: ApoE-knockout mice were fed a Paigen diet and L-methionine in drinking water for 16 weeks to create a mouse model of atherosclerosis with hyperhomocysteinemia. H2 S donors (NaHS and GYY4137) were administered by intraperitoneal injection. We also assayed the H2 S produced (by methylene blue assay and mito-HS [H2 S fluorescence probe]), cystathionine γ lyase (CSE) mRNA and protein expression, and CSE sulfhydration and nitrosylation and its activity. Key

Results

H2 S donor treatment significantly lowered atherosclerotic plaque area, macrophage infiltration, and serum homocysteine level in the mouse model of atherosclerosis with co-existing hyperhomocysteinemia. mRNA and protein levels of CSE, a key enzyme catalyzing homocysteine trans-sulfuration, were down-regulated with hyperhomocysteinemia, and CSE catalytic activity was inhibited. All these effects were reversed with H2 S donor treatment. Hyperhomocysteinemia induced CSE nitrosylation, whereas H2 S sulfhydrated CSE at the same cysteine residues. Nitrosylated CSE decreased and sulfhydrated CSE increased its catalytic and binding activities towards L-homocysteine. Mutation of C252, C255, C307, and C310 residues in CSE abolished CSE nitrosylation or sulfhydration and prevented its binding to L-homocysteine. Conclusions and implications: Sulfhydration or nitrosylation of CSE represents a yin/yang regulation of catalysis or binding to L-homocysteine. H2 S donor treatment enhanced CSE sulfhydration, thus lowering serum L-homocysteine, which contributed in part to the anti-atherosclerosis effects in ApoE-knockout mice with hyperhomocysteinemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。