TRAIL receptor signaling regulation of chemosensitivity in vivo but not in vitro

TRAIL 受体信号调节体内化学敏感性,但不调节体外化学敏感性

阅读:4
作者:Christina Menke, Tatiana Goncharov, Lubna Qamar, Christopher Korch, Heide L Ford, Kian Behbakht, Andrew Thorburn

Background

Signaling by Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) and Fas ligand (FasL) has been proposed to contribute to the chemosensitivity of tumor cells treated with various other anti-cancer agents. However, the importance of these effects and whether there are differences in vitro and in vivo is unclear. Methodology/principal findings: To assess the relative contribution of death receptor pathways to this sensitivity and to determine whether these effects are intrinsic to the tumor cells, we compared the chemosensitivity of isogenic BJAB human lymphoma cells where Fas and TRAIL receptors or just TRAIL receptors were inhibited using mutants of the adaptor protein FADD or by altering the expression of the homeobox transcription factor Six1. Inhibition of TRAIL receptors did not affect in vitro tumor cell killing by various anti-cancer agents indicating that chemosensitivity is not significantly affected by the tumor cell-intrinsic activation of death receptor signaling. However, selective inhibition of TRAIL receptor signaling caused reduced tumor regression and clearance in vivo when tested in a NOD/SCID mouse model. Conclusions: These data show that TRAIL receptor signaling in tumor cells can determine chemosensitivity in vivo but not in vitro and thus imply that TRAIL resistance makes tumors less susceptible to conventional cytotoxic anti-cancer drugs as well as drugs that directly target the TRAIL receptors.

Conclusions

These data show that TRAIL receptor signaling in tumor cells can determine chemosensitivity in vivo but not in vitro and thus imply that TRAIL resistance makes tumors less susceptible to conventional cytotoxic anti-cancer drugs as well as drugs that directly target the TRAIL receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。