Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors

多种突变和旁路机制可能导致对 MET 抑制剂产生获得性耐药性

阅读:5
作者:Jie Qi, Michele A McTigue, Andrew Rogers, Eugene Lifshits, James G Christensen, Pasi A Jänne, Jeffrey A Engelman

Abstract

Therapies targeting receptor tyrosine kinases have shown efficacy in molecularly defined subsets of cancers. Unfortunately, cancers invariably develop resistance, and overcoming or preventing resistance will ultimately be key to unleashing their full therapeutic potential. In this study, we examined how cancers become resistant to MET inhibitors, a class of drugs currently under clinical development. We utilized the highly sensitive gastric carcinoma cell line, SNU638, and two related MET inhibitors PHA-665752 and PF-2341066. To our surprise, we observed at least two mechanisms of resistance that arose simultaneously. Both resulted in maintenance of downstream PI3K (phosphoinositide 3-kinase)-AKT and MEK (MAP/ERK kinase)-ERK signaling in the presence of inhibitor. One mechanism, observed by modeling resistance both in vitro and in vivo, involved the acquisition of a mutation in the MET activation loop (Y1230). Structural analysis indicates that this mutation destabilizes the autoinhibitory conformation of MET and abrogates an important aromatic stacking interaction with the inhibitor. The other cause of resistance was activation of the epidermal growth factor receptor (EGFR) pathway due to increased expression of transforming growth factor α. Activation of EGFR bypassed the need for MET signaling to activate downstream signaling in these cells. This resistance could be overcome by combined EGFR and MET inhibition. Thus, therapeutic strategies that combine MET inhibitors capable of inhibiting Y1230 mutant MET in combination with anti-EGFR-based therapies may enhance clinical benefit for patients with MET-addicted cancers. Importantly, these results also underscore the notion that a single cancer can simultaneously develop resistance induced by several mechanisms and highlight the daunting challenges associated with preventing or overcoming resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。