REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice

REDD1 激活糖尿病小鼠视网膜中 ROS 生成反馈回路

阅读:7
作者:William P Miller, Allyson L Toro, Alistair J Barber, Michael D Dennis

Conclusions

The findings provide new insight into the mechanism whereby diabetes-induced hyperglycemia causes oxidative stress and visual dysfunction. Specifically, hyperglycemia-induced REDD1 activates a ROS-generating feedback loop that includes Akt/GSK3. Thus, therapeutic approaches targeting REDD1 expression and ROS may be beneficial for preventing diabetes-induced visual dysfunction.

Methods

Wild-type and REDD1-deficient mice were administered streptozotocin to induce diabetes. Some mice received the antioxidant N-acetyl-l-cysteine (NAC). Visual function was assessed by virtual optometry. Retinas were analyzed by Western blotting. Reactive oxygen species (ROS) were assessed by 2,7-dichlorofluoroscein. Similar analyses were performed on R28 retinal cells in culture exposed to hyperglycemic conditions, NAC, and/or the exogenous ROS source hydrogen peroxide.

Purpose

The present study was designed to evaluate the role of the stress response protein REDD1 in diabetes-induced oxidative stress and retinal pathology.

Results

In the retina of diabetic mice, REDD1 expression and ROS were increased. In cells in culture, hyperglycemic conditions enhanced REDD1 expression, ROS levels, and the mitochondrial membrane potential. However, similar effects were not observed in the retina of diabetic mice or cells lacking REDD1. In the retina of diabetic mice and cells exposed to hyperglycemic conditions, NAC normalized ROS and prevented an increase in REDD1 expression. Diabetic mice receiving NAC also exhibited improved contrast sensitivity as compared to diabetic controls. Hydrogen peroxide addition to culture medium increased REDD1 expression and attenuated Akt/GSK3 phosphorylation in a REDD1-dependent manner. In REDD1-deficient cells exposed to hyperglycemic conditions, expression of a dominant negative Akt or constitutively active GSK3 increased the mitochondrial membrane potential and promoted ROS. Conclusions: The findings provide new insight into the mechanism whereby diabetes-induced hyperglycemia causes oxidative stress and visual dysfunction. Specifically, hyperglycemia-induced REDD1 activates a ROS-generating feedback loop that includes Akt/GSK3. Thus, therapeutic approaches targeting REDD1 expression and ROS may be beneficial for preventing diabetes-induced visual dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。