C9orf72-Associated Arginine-Rich Dipeptide Repeat Proteins Reduce the Number of Golgi Outposts and Dendritic Branches in Drosophila Neurons

C9orf72 相关的富含精氨酸的二肽重复蛋白减少了果蝇神经元中的高尔基前哨和树突分支的数量

阅读:7
作者:Jeong Hyang Park, Chang Geon Chung, Jinsoo Seo, Byung-Hoon Lee, Young-Sam Lee, Jung Hyun Kweon, Sung Bae Lee

Abstract

Altered dendritic morphology is frequently observed in various neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the cellular and molecular basis underlying these pathogenic dendritic abnormalities remains largely unclear. In this study, we investigated dendritic morphological defects caused by dipeptide repeat protein (DPR) toxicity associated with G4C2 expansion mutation of C9orf72 (the leading genetic cause of ALS and FTD) in Drosophila neurons and characterized the underlying pathogenic mechanisms. Among the five DPRs produced by repeat-associated non-ATG translation of G4C2 repeats, we found that arginine-rich DPRs (PR and GR) led to the most significant reduction in dendritic branches and plasma membrane (PM) supply in Class IV dendritic arborization (C4 da) neurons. Furthermore, expression of PR and GR reduced the number of Golgi outposts (GOPs) in dendrites. In Drosophila brains, expression of PR, but not GR, led to a significant reduction in the mRNA level of CrebA, a transcription factor regulating the formation of GOPs. Overexpressing CrebA in PR-expressing C4 da neurons mitigated PM supply defects and restored the number of GOPs, but the number of dendritic branches remained unchanged, suggesting that other molecules besides CrebA may be involved in dendritic branching. Taken together, our results provide valuable insight into the understanding of dendritic pathology associated with C9-ALS/FTD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。