Naturally Occurring Isorhamnetin Glycosides as Potential Agents Against Influenza Viruses: Antiviral and Molecular Docking Studies

天然异鼠李素糖苷作为抗流感病毒的潜在药物:抗病毒和分子对接研究

阅读:6
作者:Andrey Bogoyavlenskiy, Irina Zaitseva, Pavel Alexyuk, Madina Alexyuk, Elmira Omirtaeva, Adolat Manakbayeva, Yergali Moldakhanov, Elmira Anarkulova, Anar Imangazy, Vladimir Berezin, Dmitry Korulkin, Aso Hameed Hasan, Mahmoud Noamaan, Joazaizulfazli Jamalis

Abstract

Influenza remains one of the most widespread infections, causing an annual illness in adults and children. Therefore, the search for new antiviral drugs is one of the priorities of practical health care. Eight isorhamnetin glycosides were purified from Persicaria species, characterized by nuclear magnetic resonance spectroscopy and mass spectrometry and then evaluated as potential agents against influenza virus. A comprehensive in vitro and in vivo assessment of the compounds revealed that compound 5 displayed the most potent inhibitory activity with an EC50 value of 1.2-1.3 μM, better than standard drugs (isorhamnetin 28.0-56.0 μM and oseltamivir 1.3-9.1 μM). Molecular docking results also revealed that compound 5 has the lowest binding energy (-10.7 kcal/mol) among the tested compounds and isorhamnetin (-8.1 kcal/mol). The ability of the isorhamnetin glycosides to suppress the reproduction of the influenza virus was studied on a model of a cell culture and chicken embryos. The ability of active compounds to influence the structure of the virion, as well as the activity of hemagglutinin and neuraminidase, has been demonstrated. Compound 1, 5, and 6 demonstrated the most effective inhibition of virus replication for all tested viruses. Molecular dynamics simulation techniques were run for 100 ns for compound 5 with two protein receptors Hem (1RUY) and Neu (3BEQ). These results revealed that the Hem-complex system acquired a relatively more stable conformation and even better descriptors than the other Neu-complex studied systems, suggesting that it can be an effective inhibiting drug toward hemagglutinin than neuraminidase inhibition. Based on the reported results, compound 5 can be a good candidate to be evaluated for effectiveness in preclinical testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。