Micropatterned Nanofiber Scaffolds of Salmon Gelatin, Chitosan, and Poly(vinyl alcohol) for Muscle Tissue Engineering

用于肌肉组织工程的鲑鱼明胶、壳聚糖和聚乙烯醇微图案化纳米纤维支架

阅读:3
作者:María I Taborda, Karina N Catalan, Nicole Orellana, Dragica Bezjak, Javier Enrione, Cristian A Acevedo, Tomas P Corrales

Abstract

The development of scaffolds that mimic the aligned fibrous texture of the extracellular matrix has become an important requirement in muscle tissue engineering. Electrospinning is a widely used technique to fabricate biomimetic scaffolds. Therefore, a biopolymer blend composed of salmon gelatin (SG), chitosan (Ch), and poly(vinyl alcohol) (PVA) was developed by electrospinning onto a micropatterned (MP) collector, resulting in a biomimetic scaffold for seeding muscle cells. Rheology and surface tension studies were performed to determine the optimum solution concentration and viscosity for electrospinning. The scaffold microstructure was analyzed using SEM to determine the nanofiber's diameter and orientation. Blends of SG/Ch/PVA exhibited better electrospinnability and handling properties than pure PVA. The resulting scaffolds consist of a porous surface (∼46%), composed of a random fiber distribution, for a flat collector and scaffolds with regions of aligned nanofibers for the MP collector. The nanofiber diameters are 141 ± 2 and 151 ± 2 nm for the flat and MP collector, respectively. In vitro studies showed that myoblasts cultured on scaffold SG/Ch/PVA presented a high rate of cell growth. Furthermore, the aligned nanofibers on the SG/Ch/PVA scaffold provide a suitable platform for myoblast alignment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。