Expression profiling of human basophils: modulation by cytokines and secretagogues

人类嗜碱性粒细胞的表达谱:细胞因子和促泌剂的调节

阅读:9
作者:Donald MacGlashan Jr

Abstract

Human basophils are an accessible participant of the human allergic reaction. There is natural variation in various functional endpoints and in signaling molecule expression but there has been only a limited effort to place this information in the context of mRNA expression profiles. This study examined the hypothesis that unique mRNA signatures could be identified during the response of human basophils to several known forms of stimulation. Highly purified human basophils were cultured in vitro and exposed to IL-3, IL-5, NGF, IL-33, IL-2, anti-IgE Ab, or FMLP and the mRNA profiles examined by microarrays. The response to IL-3 and anti-IgE Ab were examined on 2-3 time frames and the response to IL-3 examined at several concentrations. In addition, the mRNA signatures of 3 different potential phenotypes were examined. These included basophils with the so-called non-releaser phenotype, and basophils from atopic and non-atopic subjects. Given the role of IL-3 in basophil maturation and the known profound effects on mature basophil function, it was not surprising that IL-3 showed the greatest influence on the basophil transcriptome. However, it also became apparent that the act of isolating and culturing basophils was sufficient to induce a large number of changes in the transcriptome, despite high viability and recovery. These "culture-effect" changes dominated the changes in mRNA profiles induced by other stimuli. Unique signatures for anti-IgE antibody and IL-33 could be identified although the number of gene transcripts (6-30) that were unique to these two stimuli was very limited. There were no apparent unique profiles for IL-5, NGF, IL-2 or FMLP. Therefore, a potential tool for screening basophil phenotypes was limited to changes that could be induced by IL-3 (or no IL-3), IL-33 and anti-IgE Ab.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。