Vasoactive intestinal peptide and cystic fibrosis transmembrane conductance regulator contribute to the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer

血管活性肠肽和囊性纤维化跨膜传导调节剂有助于跨肠上皮样 Caco-2 单层的跨上皮钙转运

阅读:5
作者:Mayuree Rodrat, Kannikar Wongdee, Jarinthorn Teerapornpuntakit, Jirawan Thongbunchoo, Duangrudee Tanramluk, Ratchaneevan Aeimlapa, Nithipak Thammayon, Natchayaporn Thonapan, Pathnaree Wattano, Narattaphol Charoenphandhu

Abstract

Vasoactive intestinal peptide (VIP) as a neurocrine factor released by enteric neurons has been postulated to participate in the regulation of transcellular active calcium transport across intestinal epithelium, but the preceding evidence is scant and inconclusive. Herein, transepithelial calcium flux and epithelial electrical parameters were determined by Ussing chamber technique with radioactive tracer in the intestinal epithelium-like Caco-2 monolayer grown on Snapwell. After 3-day culture, Caco-2 cells expressed mRNA of calcium transporters, i.e., TRPV6, calbindin-D9k, PMCA1b and NCX1, and exhibited transepithelial resistance of ~200 Ω cm2, a characteristic of leaky epithelium similar to the small intestine. VIP receptor agonist was able to enhance transcellular calcium flux, whereas VIP receptor antagonist totally abolished calcium fluxes induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Since the intestinal cystic fibrosis transmembrane conductance regulator (CFTR) could be activated by VIP and calciotropic hormones, particularly parathyroid hormone, we sought to determine whether CFTR also contributed to the 1,25(OH)2D3-induced calcium transport. A selective CFTR inhibitor (20-200 μM CFTRinh-172) appeared to diminish calcium fluxes as well as transepithelial potential difference and short-circuit current, both of which indicated a decrease in electrogenic ion transport. On the other hand, 50 μM genistein-a molecule that could rapidly activate CFTR-was found to increase calcium transport. Our in silico molecular docking analysis confirmed direct binding of CFTRinh-172 and genistein to CFTR channels. In conclusion, VIP and CFTR apparently contributed to the intestinal calcium transport, especially in the presence of 1,25(OH)2D3, thereby supporting the existence of the neurocrine control of intestinal calcium absorption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。