Glutamate Spillover Dynamically Strengthens Gabaergic Synaptic Inhibition of the Hypothalamic Paraventricular Nucleus

谷氨酸溢出动态增强下丘脑室旁核的 Gabaergic 突触抑制

阅读:10
作者:Junya Yamaguchi, Mary Ann Andrade, Tamara T Truong, Glenn M Toney

Abstract

The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single-channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed, or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localized to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity while potentially aiding stress adaptation and habituation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。