Kappa-opioid receptor-dependent changes in dopamine and anxiety-like or approach-avoidance behavior occur differentially across the nucleus accumbens shell rostro-caudal axis

κ-阿片受体依赖性多巴胺变化和焦虑样或趋避行为在伏隔核壳喙尾轴上有不同的表现

阅读:5
作者:Breanne E Pirino, Mary B Spodnick, Andrew T Gargiulo, Genevieve R Curtis, Jessica R Barson, Anushree N Karkhanis

Abstract

Neural circuit engagement within the nucleus accumbens (NAc) shell is implicated in the regulation of both negative and positive affect. Classically, the dynorphin/kappa opioid receptor (KOR) system in the NAc was believed to promote aversion, while dopamine was viewed as interacting with reward behavior, and KOR activation was known to inhibit dopamine release. Recently, however, both the KOR and dopamine systems have, separately, been shown to have differential effects across the rostro-caudal axis of the NAc shell on hedonic responses. Whether or not this is due to interactions between KORs and dopamine, and if it extends to anxiety-like or approach-avoidance behaviors, remains to be determined. In this study, we examined in rats the relationship between the KOR and dopamine systems in both the rostral and caudal NAc shell using ex vivo fast scan cyclic voltammetry and the impact of KOR activation on affective behavior using exploration-based tasks. We report here that activation of KORs in the caudal NAc shell significantly inhibits dopamine release, stimulates rearing behavior in a novel environment, increases anxiety-like or avoidance behavior, and reduces locomotor activity. In contrast, activation of KORs in the rostral NAc shell inhibits dopamine release to a lesser extent and instead reduces anxiety-like behavior or increases approach behavior. Taken together, these results indicate that there is heterogeneity across the rostro-caudal axis of the NAc shell in the effects of KOR stimulation on affective behaviors, and they suggest that this might be due to differences in KOR control over dopamine release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。