Cost-Effective Processing of Carbon-Rich Materials in Ionic Liquids: An Expeditious Approach to Biofuels

离子液体中富碳材料的经济高效处理:一种快速的生物燃料生产方法

阅读:5
作者:Sadia Naz, Maliha Uroos, Muhammad Ayoub

Abstract

This work presents a cost-effective approach for processing of renewable carbon-rich biomass using pyridinium-based Lewis acidic ionic liquids (LAILs). Rice husk as carbon-rich lignocellulosic waste was pretreated with a series of neutral and Lewis acidic ionic liquids to yield valuable intermediate platform monosaccharides. Novelty in the work lies in direct conversion of lignocellulosic carbohydrates into reducing sugars without their further conversion into 5-hydroxymethylfurfural or any other platform chemicals that are fermentation inhibitors for bioethanol production. The unconverted cellulose-rich material (CRM) is regenerated as a delignified material by the simultaneous addition of antisolvents. CRM and recovered lignin obtained after pretreatment were analyzed via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. The process was optimized with respect to a high yield of platform sugars and the quantity as well as quality of recovered CRM and lignin contents. Various reaction parameters involving the molecular structure of ionic liquids (ILs), Lewis acidic strength of ILs, biomass loading into IL, time, temperature, and biomass particle size were screened thoroughly. From all of the tested ILs, unsymmetrical 3-methylpyridinium IL having N-octyl substitution and chloroaluminate anion showed a greater conversion efficiency at 100 °C for 1.5 h. FTIR and SEM analyses of recovered CRM justify >90% lignin removal from rice husk. From all of the removed lignin, 60 wt % of original lignin content was recovered. The Lewis acidic system possessed recycling ability up to 3 times for subsequent treatment of rice husk without a significant loss of efficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。