Secukinumab attenuates neuroinflammation and neurobehavior defect via PKCβ/ERK/NF-κB pathway in a rat model of GMH

苏金单抗通过 PKCβ/ERK/NF-κB 通路减轻大鼠 GMH 模型中的神经炎症和神经行为缺陷

阅读:5
作者:Shengpeng Liu, Shuixiang Deng, Yan Ding, Jerry J Flores, Xiaoli Zhang, Xiaojing Jia, Xiao Hu, Jun Peng, Gang Zuo, John H Zhang, Ye Gong, Jiping Tang

Aims

Germinal matrix hemorrhage (GMH) is a disastrous clinical event for newborns. Neuroinflammation plays an important role in the development of neurological deficits after GMH. The purpose of this study is to investigate the anti-inflammatory role of secukinumab after GMH and its underlying mechanisms involving PKCβ/ERK/NF-κB signaling pathway.

Conclusion

Secukinumab treatment suppressed neuroinflammation and attenuated neurological deficits after GMH, which was mediated through the downregulation of the PKCβ/ERK/NF-κB pathway. Secukinumab treatment may provide a promising therapeutic strategy for GMH patients.

Methods

A total of 154 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. Secukinumab was administered intranasally post-GMH. PKCβ activator PMA and p-ERK activator Ceramide C6 were administered intracerebroventricularly at 24 h prior to GMH induction, respectively. Neurobehavioral tests, western blot and immunohistochemistry were used to evaluate the efficacy of Secukinumab in both short-term and long-term studies.

Results

Endogenous IL-17A, IL-17RA, PKCβ and p-ERK were increased after GMH. Secukinumab treatment improved short- and long-term neurological outcomes, reduced the synthesis of MPO and Iba-1 in the perihematoma area, and inhibited the synthesis of proinflammatory factors, such as NF-κB, IL-1β, TNF-α and IL-6. Additionally, PMA and ceramide C6 abolished the beneficial effects of Secukinumab.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。