Heparanase-Induced Activation of AKT Stabilizes β-Catenin and Modulates Wnt/β-Catenin Signaling during Herpes Simplex Virus 1 Infection

肝素酶诱导的 AKT 激活可稳定 β-Catenin 并在单纯疱疹病毒 1 型感染期间调节 Wnt/β-Catenin 信号传导

阅读:4
作者:Lulia Koujah, Krishnaraju Madavaraju, Alex M Agelidis, Chandrashekhar D Patil, Deepak Shukla

Abstract

Under pathological conditions like herpes simplex virus 1 (HSV-1) infection, host-pathogen interactions lead to major reconstruction of the host protein network, which contributes to the dysregulation of signaling pathways and disease onset. Of note is the upregulation of a multifunctional host protein, heparanase (HPSE), following infection, which serves as a mediator in HSV-1 replication. In this study, we identify a novel function of HPSE and highlight it as a key regulator of β-catenin signal transduction. The regulatory role of HPSE on the activation, nuclear translocation, and signal transduction of β-catenin disrupts cellular homeostasis and establishes a pathogenic environment that promotes viral replication. Under normal physiological conditions, β-catenin is bound to a group of proteins, referred to as the destruction complex, and targeted for ubiquitination and, ultimately, degradation. We show that virus-induced upregulation of HPSE leads to the activation of Akt and subsequent stabilization and activation of β-catenin through (i) the release of β-catenin from the destruction complex, and (ii) direct phosphorylation of β-catenin at Ser552. This study also provides an in-depth characterization of the proviral role of β-catenin signaling during HSV-1 replication using physiologically relevant cell lines and in vivo models of ocular infection. Furthermore, pharmacological inhibitors of this pathway generated a robust antiviral state against multiple laboratory and clinical strains of HSV-1. Collectively, our findings assign a novel regulatory role to HPSE as a driver of β-catenin signaling in HSV-1 infection. IMPORTANCE Heparanase (HPSE) and β-catenin have independently been implicated in regulating key pathophysiological processes, including neovascularization, angiogenesis, and inflammation; however, the relationship between the two proteins has remained elusive thus far. For that reason, characterizing this relationship is crucial and can lead to the development of novel therapeutics. For HSV-1 specifically, current antivirals are not able to abolish the virus from the host, leaving patients susceptible to episodes of viral reactivation. Identifying a host-based intervention can provide a better alternative with enhanced efficacy and sustained relief.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。