Fatigue-Induced Surface Modification of Zr-Based Metallic Glass under Environmental Conditions

环境条件下锆基金属玻璃的疲劳表面改性

阅读:4
作者:Jong Hun Kim, Geun Hee Yoo, Wook Ha Ryu, Eun Soo Park, Gwan-Hyoung Lee

Abstract

Metallic glass (MG), an intrinsic heterogeneous structure at the atomic scale, is one of the promising engineering materials with intriguing physical properties. MG often suffers from the fatigue issue caused by the repetitive mechanical loading, but it is still elusive how the local heterogeneity evolves and affects the macroscale fatigue and deformation against bulky external stress. In this study, we investigate the fatigue effect in Zr-Cu-Al ribbon using a bending fatigue method. We used scanning probe microscopy (SPM) in parallel with X-ray diffraction and X-ray photoelectron spectroscopy to figure out the loading effect on the local heterogeneities. The spatially resolved SPM images show that there is a local fluctuation of mechanical and electrical properties on the fatigued side along with morphological deformation compared to the unloaded side. Approaching the broken edge where the fatigue failure occurs, the decaying tendency is not only more dominant but also accelerated by surface oxidation of the fatigued regions. Our study provides a useful guideline on how to monitor structural changes of MGs under fatigue conditions in service and will open a door toward commercialization of high-performance structural engineering materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。